

サーバーレス機密コンテナ

Serverless Confidential Containers

Carlos Segarra, Peter Pietzuch (Imperial College London) Yoshiaki Sato (Waseda University) <u>Pierre-Louis Aublin</u> (IIJ Research laboratory)

> 2025年5月19日 IIJ Research Lab Seminars

Acknowledgements

This **talk** is heavily **based on** the following paper:

Segarra, C., Feldman-Fitzthum, T., Buono, D., & Pietzuch, P. **Serverless confidential containers: Challenges and opportunities.** In *Proceedings of the 2nd Workshop on SErverless Systems, Applications and Methodologies* (SESAME), April 2024.

Cloud Computing Layers

Serverless Behind the Scenes

- **Developer writes** and **deploys application** in the cloud
- **Cloud** provider **provides** entire **infrastructure**
 - Application runtime, datastore, authentication, monitoring, scaling, ...
- Cloud provider can **colocate** multiple **users**
- Multiple **Frameworks**
 - OpenFAAS
 - Apache OpenWhisk
 - Knative

https://www.openfaas.com/ https://openwhisk.apache.org/ https://knative.dev/docs/

Knative Serverless Computing Framework

- Built on top of Kubernetes (==K8s)
- Components:
 - **Container Image Registry**: manages container images (contain application code)
 - **Kubelet**: 1 per worker node, manages containers
 - **Pod**: basic scheduling/isolation unit;
 1+ containers on same node
 - **Kn controller**: control-plane pod
 - **containerd**: container runtime
 - **runc**: tool to execute a container

The Need for Confidential Serverless Computing

- Serverless Use-cases
 - Image processing
 - Machine learning
 - Medical research
 - Transaction fraud detection

- Confidentiality concerns
 - Sensitive/private user data
 - Security attacks
 - Government-sponsored mass surveillance programs
 - Data protection regulations (e.g., GDPR)

- Issues
 - Malicious/compromised cloud provider or user can access it

Confidential Computing

- **Protects** data **confidentiality** and **integrity**
- Assumes **strong attacker**
 - Controls hardware and software, including OS/hypervisor
- Augments CPU with **secure component**
 - Trusted Execution Environment (TEE)
- Implementations
 - Intel **SGX**, **TDX**
 - AMD SEV, **SEV-SNP**
 - ARM TrustZone, CCA
 - RISC-V Keystone, PENGLAI

Confidential Computing Attestation

Problem

- How to make sure the **correct code** is executed?
- How to make sure the code is executed on the **correct hardware**?

Solution: **attestation**

- CPU augmented with cryptographic **keys**
- Involves **Trusted 3**rd **party**

Process in a nutshell

- **CPU** produces **signed report**
- **3rd party checks report** validity

Confidential Computing Attestation Process

Two flavours of TEEs

- Enclave-based
 - Executes only part of application inside TEE
 - Need to **modify application**
 - Small Trusted Computing Base (TCB)
 - Intel SGX, ARM TrustZone

- VM-based (cVM)
 - Executes entire VM inside TEE
 - No application modification
 - Large TCB

- Intel TDX, AMD SEV-SNP

cVM TEEs

Misono et al. "Confidential VMs Explained: An Empirical Analysis of AMD SEV-SNP and Intel TDX." Proceedings of the ACM on Measurement and Analysis of Computing Systems 2024 Vol. 8 No. 3 Article 36

CC-Knative: Serverless Confidential Containers

- Additional components:
 - **TEE** hardware
 - Trusted 3rd party: attestation & secrets provisioning
 - **Pod** is a **cVM**: provides confidentiality/isolation
 - Kata containers: "The speed of containers, the security of VMs"
 - Kata shim: executes containers inside cVM
 - Guest shim: host kernel, Kata endpoint, ...

Performance Evaluation Settings

• Set-up

- Single-node: AMD EPYC 7763 CPU, 128 cores (SEV)
- Kubernetes 1.28.2; CoCo 0.7.0, Knative 1.11.0
- "Hello world" Knative service in Python (Knative demo)

• Metrics

- Cold start
- Warm start
- Scale-up latency

• Systems

- **runc**: default in Knative; uses containers
- **kata**: executes each pod in a VM
- CC-Knative: kata + attestation + encryption

Performance Evaluation Summary

CC-Knative overhead compared to containers:

- Cold start: 2.5x
- Warm start: 8.5x
- Scale out: 11x

Overheads

• Cold start

- Guest VM pins all memory (specific to AMD SEV)
- VM image decryption

• Warm start

- Not possible to reuse VM for security reasons
- Not possible to pre-warm VMs with AMD SEV
- Scale up
 - Pulling images throttled down by remote registry
 - Relying on local registry faster, but less secure (cloud provider controls it)

Proposed Optimisations

- 2 categories
 - VM creation
 - VM provisioning
- Optimise image deployment
 - One part confidential (never cached locally)
 - One part non-confidential (cached locally)

• Pre-warm the VM

- Start VMs in advance
- Problems:
 - Max #cVM limited by hardware
 - Attestation

- Cache cVMs with Trusted Monitor
 - Rely on **virtual TPM**
 - Tamper-resistant secure cryptoprocessor
 - Trusted monitor executes inside cVM at higher privilege than application
 - Attestation via vTPM
 - Confidential Restore: restore cVM to clean state for re-use

Future Works

- Port to AMD SEV-SNP and Intel **TDX**
 - Done

. . .

- Implement the **optimisations**
- Implement the vTPM and attestation
- In-depth **evaluation**
 - Multiple nodes setting

Conclusion

- Serverless Computing needs Confidential Computing
- We propose **CC-Knative**: **Knative** serverless framework port to **cVMs**
- Stay tuned!
 - https://github.com/sc2-sys

contact