Towards GPU Passthrough in Intel TDX: Design
Challenges and Early Baselines

Yoshiaki Sato
Waseda University

Hidetoshi Uranami
Waseda University

Akihiro Saiki
Waseda University

Keiji Kimura
Waseda University

yoshisato@kasahara.cs.waseda.ac.jp reinsirk@kasahara.cs.waseda.ac.jp saiki@kasahara.cs.waseda.ac.jp keiji@waseda.jp

Abstract—Confidential Virtual Machines (CVMs) like Intel
TDX and AMD SEV-SNP provide hardware-based isolation for
cloud workloads. While SEV-SNP supports GPU passthrough
for legacy (non-CC capable) accelerators, Intel TDX currently
lacks this capability. This work-in-progress analyzes the perfor-
mance implications of enabling such functionality across both
platforms. We identify fundamental architectural differences:
SEV-SNP’s guest-controlled page encryption enables near-native
performance, while TDX’s hypervisor-mediated design requires
mandatory VMEXITs and may impose significantly higher costs.
Our CUDA microbenchmarks establish baseline metrics showing
pageable transfers achieve 50-75% throughput of pinned DMA
on Intel Xeon systems. We present the technical requirements for
TDX GPU passthrough and analyze why Intel’s stricter security
model complicates performance. This work provides developers
with critical performance expectations when choosing between
CVM platforms for GPU workloads, highlighting the trade-offs
between security architectures and practical performance.

Index Terms—Confidential Computing, Intel TDX, NVIDIA
GPU

I. INTRODUCTION AND MOTIVATION

The rapid ascent of Al and large—scale data analytics is
tilting cloud usage ever further toward GPU-accelerated work-
loads. Confidential computing (CC) offerings such as Intel
TDX and AMD SEV-SNP extend hardware isolation to these
multi-tenant clouds, yet GPU support inside a confidential
VM (CVM) remains emerging. While privacy-preserving LLM
inference and federated learning demonstrably benefit from
TEEs [1]-[4], today only NVIDIA H100 ships with on-board
mechanisms for encrypted DMA and device attestation [5],
[6]. This leaves the vast installed base of pre-Hopper cards
unusable inside CVMs. While many projects evaluate the
performance of H1I00 GPUs in CC-scenarios, to the best of
our knowledge, no projects have evaluated the performance of
non-CC GPUs inside CVMs [7]-[9].

Recent proof-of-concept patches show that non-CC GPUs
can operate in a SEV-SNP guest by selectively decrypting
memory regions used for GPU DMA access while maintaining
encryption for the rest of the VM’s memory through kernel-
level page table modifications and coordination with the AMD
Secure Processor [10]. Intel TDX lacks this stop-gap. This
paper closes the first part of the gap by quantifying the
initial overheads using micro-benchmarks and discussing the
mechanisms and fundamental micro-architectural differences
present between SEV-SNP and TDX, informing the implica-
tions of non-CC GPU passthrough into TDX. Such a baseline

30

Transfer Direction

Bandwidth (GB/s)
)

VM Overhead (Pageable):
DH: 0.5%, HID: 2.5%

Normal VM
Pageable

Normal VM

Baremetal
Pinned inne

Baremetal
Pageable
Configuration

Fig. 1. GPU Data-Transfer Performance on TDX-Capable Intel Xeon Hosts

and analysis will show whether TDX’s complex memory
acceptance protocol imposes performance penalties for GPU
support. Our contributions are summarized as follows:

« Baseline measurement for standard Intel XEON Systems.
o Analysis of the GPU passthrough method in SNP.
« Architectural differences for TDX and its implications.

II. TECHNICAL APPROACH
A. Baseline Measurements on Intel XEON Systems

To establish a baseline for GPU performance, we mea-
sured host-to-device and device-to-host copy bandwidth on an
NVIDIA GPU (RTX A2000) using cuda-samples bandwidthT-
est [11]. Two scenarios are tested in Figure 1: a bare-metal
Linux host and a normal QEMU VM with GPU passthrough
(no CVM features enabled). As shown above, bare-metal
and normal VM both achieved an average of 25.8 GB/s bi-
directional data transfer rate for pinned memory. On the other
hand, pageable transfer rates were noticeably less for both
baremetal and normal VM, caused by an extra copy of the
memory in a software bounce buffer. The key observation
is that even without any memory encryption, pageable trans-
fers impose a 25-50% bandwidth penalty. While a 25-50%
bandwidth penalty may appear severe, many ML workloads
are compute-bound rather than I/O-bound, suggesting that
GPU acceleration remains viable for a range of confidential
workloads. Establishing these upper and lower bounds for
bandwidth performance creates a foundation against which

upcoming TDX numbers can be judged proving a baseline
missing from current literature.

B. Non-CC GPU Passthrough for SEV-SNP

To enable non-CC capable GPUs in AMD SEV-SNP
confidential VMs, Hur et al. [12] implemented a two-
part patching approach. The kernel patch extends the
x86 memory management subsystem with three func-
tions: is_vm_encrypted(), set_vm_decrypted(),
and set_vm_encrypted (), which manipulate the encryp-
tion bit in page table entries (PTE) and coordinate with
the AMD Platform Security Processor (PSP). The NVIDIA
open GPU kernel module (OGKM) patch integrates these
APIs into the Unified Virtual Memory (UVM) subsystem,
automatically decrypting memory regions when external map-
pings are created and re-encrypting them upon cleanup. This
approach creates a controlled security boundary where only
GPU-accessible memory regions are selectively decrypted,
maintaining the confidentiality of the remaining VM memory.

C. Analysis

This “page-flip method” for SNP inherently trades security
for performance as the whole cycle requires zero hypervisor
involvement and only micro-second setup latency:

1) Clear the C-Bit in PTE: The guest marks the page
“shared” by writing C = 0 in its own page-table entry,
telling the memory controller the data no longer needs
to be encrypted. [12]

2) Validate with PVALIDATE: The guest immediately
executes the new PVALIDATE instruction on that page,
which flips the RMP entry from Guest-Invalid to Guest-
Valid. No hypervisor call or VMEXIT is involved. [12]

3) Flush local TLB: A quick TLB flush guarantees every
core sees the updated C-bit costing only a few us system-
wide.

4) DMA at wire-speed: Once the page is Guest-Valid & C
= 0, the memory controller simply bypasses AES-XTS,
so the device and the CPU both see raw DRAM and
transfers run at normal PCle bandwidth. [12]

5) Flip back when done: To reclaim the page, the guest
sets C = 1 in the PTE and issues PVALIDATE again to
restore Guest-Valid & Encrypted status, and the page is
private once again. [10]

This architectural efficiency—zero VMEXITs, guest-
controlled validation, and direct memory controller by-
pass—translates to substantial performance benefits. Recent
measurements by Uranami et al. demonstrate that SEV-SNP
achieves approximately 22.0GB/s data transfer throughput
for GPU workloads [13], approaching the 26.9GB/s baseline
measured for regular baremetal transfers. This modest (18%)
overhead demonstrates that the page-flip method preserves
near-native GPU performance.

D. Non-CC GPU Passthrough for TDX

There are several micro-architectural hurdles when trying
to reuse the SNP “page-flip” method on Intel TDX. The

fundamental obstacle is caused by the Intel TDX’s design
that changes architectural control ownership. While SNP gives
the guest a one-instruction privilege to validate its own RMP
entries, TDX insists the hypervisor mediate every page-state
change through Secure-EPT and the TDX module [14], [15].
This adds extra exits, bookkeeping, and a whole accept round-
trip:

1) Encryption bit ownership: For SNP, the guest’s own
PTE has the C-bit, and clearing it makes the memory
controller skip AES-XTS [12]. For TDX, the guest has
only an S-bit hint while the real encryption state lives in
a Secure-EPT entry that the TDX module-not the guest—
owns [16]. Therefore, TDX guest cannot simply “flip a
bit.”

2) Page-state transition path (Validation vs.
Map/Accept): For SNP, the guest flips C-bit in its
PTE and finishes with a guest-only PVALIDATE
instruction, and thus, no exit to the hypervisor is
required. However, for TDX to convert page mappings,
the TD guest must issue TDCALL <TDG.VP.VMCALL
MapGPA> for the hypervisor to add a shared mapping
and TDG.MEM.PAGE.ACCEPT for the TDX module
to update the owner bits. Essentially, TD calls MapGPA
— TDX-module mediates — hypervisor updates page
tables — control returns to TD, adding 2 whole
VMEXITs to the workflow [16].

For the proposed passthrough plan, Linux already ex-
poses kernel API that would make implementation ef-
fort fairly simple by using set_memory_decrypted()
and set_memory_encrypted () [17]. Therefore, a smart
refactor of the Linux kernel patch would be sufficient. How-
ever, internally, these helpers wrap the MapGPA + Accept
flows, may sleep/retry, and therefore cost far more than the
SNP path.

III. DISCUSSION & NEXT STEPS

Our analysis reveals fundamental architectural differences
in how TDX and SEV-SNP approach memory security
that directly impact GPU passthrough performance. While
SEV-SNP’s guest-controlled C-bit enables microsecond-scale
page transitions, TDX’s hypervisor-mediated model introduces
mandatory VMEXITs and TDX module calls that may sig-
nificantly increase overhead. The implications extend beyond
performance. TDX’s design philosophy—requiring hypervisor
involvement for all page state changes—reflects Intel’s stricter
security model, where the guest cannot unilaterally declassify
memory.

Moving forward, implementing our proposed design will
quantify these overheads precisely. Key measurements will
include: (1) MapGPA latency compared to SEV’s PVALI-
DATE, (2) impact of TDX’s accept protocol on streaming
DMA workloads, and (3) whether batching page conversions
can amortize the VMEXIT costs. These metrics will inform
whether TDX’s security-first architecture imposes accept-
able overhead for GPU-accelerated confidential computing.
While both platforms ultimately expose plaintext to achieve

GPU functionality, understanding their performance charac-
teristics helps developers choose appropriate platforms for
their security-performance requirements until hardware-based
confidential GPU solutions mature.

ACKNOWLEDGEMENT

A part of this paper is supported by JSPS KAKENHI Grant
Number JP23K11040.

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

K. G. Narra, Z. Lin, Y. Wang, K. Balasubramaniam, and M. Annavaram,
“Privacy-Preserving Inference in Machine Learning Services Using
Trusted Execution Environments,” arXiv preprint arXiv:1912.03485,
Dec. 2019.

T. Lee et al., “Occlumency: Privacy-Preserving Remote Deep-learning
Inference Using SGX,” in Proc. 25th ACM Int. Conf. Mobile Comput-
ing and Networking (MobiCom ’'19), Los Cabos, Mexico, Oct. 2019,
pp. 46:1-46:17.

E. Kuznetsov, Y. Chen, and M. Zhao, “SecureFL: Privacy Preserving
Federated Learning with SGX and TrustZone,” in Proc. 6th ACM/IEEE
Symp. Edge Computing (SEC ’21), San Jose, CA, USA, Dec. 2021,
pp. 1-13.

J. Guo, P. Pietzuch, A. Paverd, and K. Vaswani, “Trustworthy Al using
Confidential Federated Learning,” ACM Queue, vol. 22, no. 2, May 2024.
[Online]. Available: https://queue.acm.org/detail.cfm?id=3665220

E. Apsey, P. Rogers, M. O’Connor, and R. Nertney,
“Confidential Computing on NVIDIA HI100 GPUs for Secure
and Trustworthy Al NVIDIA Technical Blog, 03 Aug.
2023. [Online]. Available: https://developer.nvidia.com/blog/
confidential-computing-on-h100-gpus-for-secure-and- trustworthy-ai/.
[Accessed: 16-Jun-2025].

P. Rogers and A. Delignat-Lavaud, “Hopper Confidential Computing:
How it Works Under the Hood,” in NVIDIA GTC Spring 2023,
Mar. 2023. [Online]. Available: https://static.rainfocus.com/nvidia/
gtespring2023/sess/1666639437498001endS/supmat/S51709%20- %
20Hopper%20Confidential %20Computing_%20How %20it%20Works%
20under%20the%20Hood_1679465925191001GNep.pdf. Accessed:
Jun. 18, 2025.

Y. Yang, M. Sonji, and A. Jog, “Dissecting Performance Overheads of
Confidential Computing on GPU-based Systems,” in Proc. IEEE Int.
Symp. Performance Analysis of Systems and Software (ISPASS), Ghent,
Belgium, May 2025, to appear.

A. Mohan, M. Ye, H. Franke, M. Srivatsa, Z. Liu, and N. M. Gonzalez,
“Securing Al inference in the cloud: Is CPU-GPU confidential comput-
ing ready?,” in Proc. IEEE 17th Int. Conf. Cloud Comput. (CLOUD),
Jul. 2024, pp. 164-175.

G. Dhanuskodi, S. Guha, V. Krishnan, A. Manjunatha, R. Nert-
ney, M. O’Connor, and P. Rogers, “Creating the First Confidential
GPUs,” Commun. ACM, Practice, Jan. 8, 2024. [Online]. Available:
https://cacm.acm.org/practice/creating-the-first-confidential-gpus/

J. Hur,“sev-snp-gpu,” GitHub repository, 2025. [Online]. Available:
https://github.com/JaewonHur/sev-snp-gpu [Accessed: 16-Jun-2025].
NVIDIA Corporation, “cuda-samples: bandwidthTest sample,” GitHub

repository, 2024. [Online]. Available: https://github.com/NVIDIA/
cuda-samples/tree/main/Samples/1_Utilities/bandwidthTest. Accessed:
Jun. 18, 2025.

Advanced Micro Devices, Inc., “AMD SEV-SNP:
Strengthening VM Isolation with Integrity Protection
and More,” White Paper, Jan. 2020. [Online]. Available:

https://www.amd.com/content/dam/amd/en/documents/epyc-business-
docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-
protection-and-more.pdf :contentReference[oaicite:0]index=0

H. Uranami, A. Saiki, and K. Kimura, “Evaluation of GPGPU Data
Transfer Overhead on a Secure VM,” [EICE Tech. Rep., vol. 2025-
SLDM208, no. 14, pp. 1-6, Mar. 2025.

Intel Corporation, “Intel Trust Domain Extensions (TDX) Whitepaper,”
Feb. 2022. [Online]. Available: file:///Users/yoshisato/Downloads/TDX-
Whitepaper-February2022.pdf. Accessed: Jun. 18, 2025.

Intel Corporation, “Intel® TDX Module 1.5 Base Architecture Spec-
ification,” Intel Document #773614-001, Section 11.1: Virtualization
Exception Handling, Aug. 2023.

[16]

[17]

Intel Corporation, “Guest-Host-Communication Interface (GHCI) for
Intel® Trust Domain Extensions (Intel® TDX),” White Paper, Version
1.5, Feb. 2022.

“Intel Trust Domain Extensions (TDX),” The Linux Kernel Docu-
mentation, Section: Shared Memory Conversions. [Online]. Available:
https://docs.kernel.org/arch/x86/tdx.html

